鉄鋳物の技術系統化調査

Historical Development of Iron Castings' Technologies

中江 秀雄 Hideo Nakae

■ 要旨

鋳物は人類が5000年以上前から作ってきた、鍛造品と並ぶ古く歴史ある金属製品であり、金属加工法でもある。この技法は我が国に於いても2000年以上の歴史があり、銅鐸や奈良の大仏がこれに相当する。しかし、一般にはその実態が十分に理解されているとは思われない。鋳物は鍋釜に始まり、脆く・弱い金属というのが一般的な日本人の理解であろうが、実際には鋳物生産量の60~70%は自動車産業で使われている。

鋳物は、鋳鉄、鋳鋼からアルミニウムや銅合金、チタンなど、殆ど全ての金属で製造されるが、本稿では鉄鋳物 (鋳鉄と鋳鋼)を中心に、幕末から現在に至る 160 年ほどの近代化の歴史を取りまとめた。このように、鉄鋳物を中心に記述したので、鋳型は砂型に限定した。したがって、ダイカストや精密鋳造などには殆ど触れていない。

1853年にペリーが来日し、これが切っ掛けで江戸幕府は開国に至り、明治維新を迎えたことは良く知られている。この主原因は大砲の威力の差であった。この間、我が国では徳川幕府や薩長・長崎・佐賀を中心に、欧米からの技術導入が盛んに行われ、これが我が国の近代化に大きく貢献したと筆者は感じている。江戸末期に建設された長崎造船所や横浜製鉄所の規模は町工場ではなく、かなりの規模であり、鋳造工場を備えていた。そこで、先ずは江戸幕府によって建設されたこれらの工場と鋳鉄製の大砲の製造から筆を興し、明治から大正、昭和、平成へと鉄鋳物の変遷に筆を進めた。

しかし、江戸時代と今日では鉄に対する用語に大きな相違があるので、そのままの記述では理解が得られ難い。 そこで先ずは、江戸時代の鉄とその製法、特徴を現在の鉄の用語との対比で記述することから始めた。江戸時代 には国産の和鉄と、輸入品の洋鉄があり、それらの特徴と鋳物への使用時の問題点を明らかにした。それは、和 鉄では良質の鋳鉄製大砲の製造ができず、幕末からは木炭高炉を、明治にはコークス高炉の導入となり、良質の 銑鉄が得られるようになった。これが原因で鋳鉄製の大砲が完成したのは明治中頃であった。そして、明治の終 わりには鋳鋼の技術が向上し、大砲は鋳鋼製となった。

この様な技術の変遷を、原材料の鉄源、溶解炉、鋳型などに分類し、時代の流れと個々の技術の変遷を記述した。特に、鋳鉄では我が国古来の溶解炉である甑から反射炉やキュポラへの変遷について、技術課題面から検討を加えた。また、鋳鋼では酸性転炉から塩基性転炉、そして反射炉から平炉、そしてアーク炉への変遷を鋳鋼の品質向上の観点から記述した。

鋳鉄鋳物は我が国では古くから作られていたが、原料鉄の問題で白鋳鉄しか得られなかった。その後、コークス高炉の出現でねずみ鋳鉄ができるようになった。時を経て、明治の後期には鮎川義介による戸畑鋳物の設立で可鍛鋳鉄ができるようになる。さらに、昭和20年代の球状黒鉛鋳鉄とミーハナイト鋳鉄の技術導入で我が国の鋳鉄技術は大きく進歩し、昭和40年頃には技術レベルは世界水準に達した。しかし、我が国発の独自の材料を生むには至っていない。これは、欧米で完成された技術が数十年遅れで我が国に導入されたことによるのであろう。尤も、量産技術・信頼性向上などの点では世界の最先端を行くようになった。これに対し、鋳鋼ではクボタのGコラムや日立金属の耐熱ターボ部品など、世界に冠たる製品を世に出している。これは、我が国鉄鋼業の進歩と関連するのであろう。

一方で、砂型は当初は日本古来の技術に依存していたものが、昭和 40 年頃から世界に誇れる我が国独自の造型手法が開発された。これには、真空を利用した V プロセスや人工砂の開発がある。この主因は、我が国で有機物が鋳物砂の粘結材として使用され始めた時期が、欧米に大きな遅れをとっていなかったこと、廃砂など産業廃棄物の低減など、環境問題に対する我が国の取り組みが強力であったことが挙げられる。

鋳造分野ではシミュレーションの技術が開発され、これが大きく進歩し、現在では世界の鋳物工場で実用に供される段階に達した。その根源は我が国の新山英輔にある。その証拠には、NIIYAMA-criterion と呼ばれる判断基準が鋳造欠陥発生の評価に世界で用いられている点にある。しかし、残念なことには、この分野の最先端のソフトは海外勢が占めているのが現状である。

鋳造は歴史ある加工法である。しかし、歴史が古いことから最近の進歩が遅い、或いは検討に値する課題が残されていない、と考えるのは誤りである。コンピューターや、CAD、CAMの進歩は鋳造にも新しい可能性があることを示している。これら技術の活用で鋳造業の更なる発展が期待されている。

■ Abstract

Castings is one of the most historical metal products in the same way as forgings and casting is a kind of the metal forming processes represent the culmination of a long history of humanities over 5,000 years along with metal forging. Likewise, such techniques have been used in Japan for more than 2,000 years, as is evidenced by the nation's ritual dotaku bronze bells and the big Buddha statue of Nara. However, the quality of castings is apparently not very well recognized for Japanese people, they generally tend to imagine for castings, the first of which were pots and kettles, as brittle and weak, metal despite the fact that some 60% to 70% of castings products are used in the motor vehicle industry.

Castings can be made with practically any kind of metal — encompassing everything from cast iron, and cast steel to aluminum, copper and titanium alloys. However, this manuscript focused on the history of ferrous casting modernization process in terms of cast iron and cast steel, while looking at the closing days of the Tokugawa shogunate to the present day, a span of almost 160 years. Also, the focus here on cast iron and cast steel meant that the discussion was limited in terms of casting molds to that of the sand casting method. As such, very little mention is made for die casting, precision casting or other such production methods.

It is well known that Matthew Perry's arrival in Japan back in 1853 prompted the Edo Shogunate to open Japan to the outside world, thereby hastening what is known as the Meiji Restoration. This course of events was largely sparked by a realization in Japan of the disparity in firepower between the cannons of the two nations. The active introduction of technology from the US and Europe into Japan, chiefly to the Tokugawa Shogunate as well as the Satsuma and Choshu, Nagasaki and Saga clans, played a seemingly large role in fueling Japan's modernization. Unlike the small family operations typical up until that point, The Nagasaki Shipyard and Yokohama Ironworks built toward the end of Japan's Edo era were fairly large, while forgeries also began to emerge. The author begins by bringing up examples of such factories that were built by the Edo Shogunate and delving into the manufacture of cast-iron cannons, before going on to describe transitions in the realm of iron casting starting from Japan's Meiji period and on through the Taisho, Showa and Heisei eras.

However, what we regard as iron today is vastly different technical terms from what people viewed as constituting iron back in the Edo era, a fact that makes it difficult to move ahead with the topic without further explanation on this point. With that, the author set off describing prevalent iron smelting methods and characteristics of the material in the Edo period, and contrasted steel-related terminology of those days to that which is used today. The author noted that during the Edo era iron was classified either as Japanese iron (watetsu) or as iron imported from the West (yotetsu), and went on to detail characteristics of each while pointing out problems that would crop up when using such materials to make cast iron objects. Whereas decent cast iron cannons initially could not be produced using Japanese iron, the introduction of charcoal blast furnaces toward the end of the Edo period and then coke-fired blast furnaces in the Meiji era resulted in Japan's capacity to produce high-grade pig iron. That led to the emergence of the nation's first cast iron cannons in the middle of the Meiji era. Subsequently, cannons in Japan would come to be made of cast steel toward the end of the Meiji period thanks to ensuing improvements in cast steel production techniques.

The author described technological developments in terms of changes such as in iron raw materials, smelting furnaces and casting molds, thereby detailing respective technological shifts as time progressed. The author also delved into pertinent technical issues, particularly in regard to Japan's transition from traditional small-sized cupola furnaces used in the nation since ancient times to the later adoption of reverberatory furnaces and larger cupola furnaces used in cast iron production. Meanwhile, the author looked at cast steel from the perspective of quality gains as production methods shifted from acid Bessemer converters to basic converters, and even later from reverberatory furnaces to open-hearth furnaces, and finally arc furnaces.

Although iron castings had long been produced in Japan, it was possible to make only white cast iron due to shortcomings of iron raw materials. Later, the advent of coke-fired blast furnaces would enable Japanese manufacturers to produce gray cast iron due to the high silicon contents. As time progressed, the nation would gain the capacity to produce malleable cast iron when Yoshisuke Aikawa established Tobata Casting Company in the latter half of the Meiji period. Subsequently during the post-1945 era, Japan took a big progress in the area of cast iron production with the introduction of processes to manufacture spheroidal graphite cast iron and Meehanite metal, and by around 1965 the nation could boast world-class levels of manufacturing technology. Nevertheless, this did not lead to Japan coming up with new types of materials of its own, most likely because Japan tended to adopt respective technologies several decades after they had been perfected in the Europe and North America. Later, however, Japan would go on to become a world leader in terms of, for instance, its mass production technologies and its ability to afford greater reliability, thereby enabling the nation to introduce unparalleled products to the world such as the G-column line from Kubota Metal Corporation and super-heat-resistant cast steel exhaust manifolds produced by Hitachi Metals. These successes indeed helped underpin the development of Japan's steel industry.

Whereas Japan's steel industry initially relied on the nation's age-old sand mold production techniques, from around 1965 it would go on to develop its own world-renowned casting mold methods. Such technological advances include the V-process method of vacuum molding, and molding methods using artificial sand. These successes can be attributed largely to the fact that Japan was not all that far behind Europe and North America

when the nation's manufacturers began using organic materials as caking additive in casting sand, and also thanks to potent initiatives to address national environmental concerns including moves to curb usage of waste sand and other forms of industrial waste.

The development of the simulation technologies for casting production, spearheaded by Japanese Eisuke Niiyama, has brought about great advances in the area of metal casting, which have since come to be adopted in foundries around the globe. Attesting to Niiyama's impact on the industry, today manufacturers worldwide apply evaluation standards to assess casting defects referred to as the "Niiyama-criterion." However, Japan unfortunately has not fared as well in the leading-edge non-technical aspects of the field now dominated by competitors overseas.

In conclusion, the casting process has been around for ages. Nevertheless, one would be mistaken to assume that recent progress in the industry has been slow based on the notion that casting methods go back a long way, and likewise it would be wrong to conclude that no remaining avenues are left to explore in this realm. For instance, advances in computer applications related to casting and relevant CAD and CAM technologies suggests the emergence of new possibilities. Indeed, the foundry industry is poised for further development amid prospects for leveraging these innovative approaches.

■目次

要旨	5. 材質の変遷
1. はじめに5	5.1 鋳鉄36
2. 鋳物の歴史と用途	5.1.1 片状黒鉛鋳鉄38
2.1 鋳物の分類と 5000 年前から現代まで 8	5.1.2 可鍛鋳鉄41
2.2 幕末から明治へ9	5.1.3 球状黒鉛鋳鉄43
2.3 鋳物の用途と特徴13	5.2 鋳鋼45
3. 原料地金の変遷	6. 鋳型と模型、鋳物の設計技術の変遷
3.1 江戸時代後期の鉄16	6.1 鋳物砂の種類と造型法49
3.1.1 タタラ、たたらと高炉16	6.2 鋳型造型法の特許52
3.1.2 和鉄の分類	6.3 日本発の造型法と鋳物砂52
3.1.3 輸入鉄	6.4 鋳物の模型と設計技術(CAE と鋳造方案) 55
a. 荷下鉄(銑鉄)19	6.4.1 フルモールド法55
b. 南蛮鉄 (鋼) ······19	6.4.2 鋳造シミュレーション(鋳造 CAE)… 55
3.2 鋳鉄21	7. 製品の変遷
3.2.1 幕末から明治21	7.1 幕末から明治にかけての鋳鉄製大砲 58
3.2.2 大正・昭和 (終戦まで)23	7.2 鋳鉄鋳物63
3.2.3 終戦から現在まで 24	7.3 鋳鋼66
3.3 鋳鋼25	8. 技術の流れ総括 70
4. 溶解炉の変遷	9. あとがきと謝辞76
4.1 鋳鉄28	専門用語の解説77
4.2 鋳鋼30	鉄鋳物の登録遺産候補一覧80

■ 著者紹介

中江 秀雄 Hideo Nakae

国立科学博物館産業技術史資料情報センター主任調査員

昭和16年 9月	東京両国生まれ
昭和39年 3月	早稲田大学理工学部金属工学科卒業
昭和45年10月	工学博士(早稲田大学)
昭和46年 1月	日立製作所機械研究所入社
昭和58年 4月	早稲田大学理工学部金属工学科教授
昭和59年 4月	早稲田大学鋳物研究所研究員
平成14年 5月	日本鋳造工学会会長
平成24年 3月	早稲田大学定年退職
平成24年 4月	早稲田大学名誉教授
平成24年 4月	国立科学博物館 産業技術史資料情報センター 主任調査員