銅製錬技術の系統化調査

Development of Copper Smelting and Refining Technologies

酒句 幸男 Yukio sako

■ 要旨

銅は人類が最初に手にした金属でありいずれの時代でも機能材料として重要な役割を果たしてきた。特に電気工学の発達により世界の銅消費量は飛躍的に増大し、現在においても増加傾向は変わらない。銅の需要を支える銅製錬技術について歴史を概観し、日本でどの様に発達したか調査した。終戦後日本の製錬所は壊滅的な打撃を受けたが、戦後10年で戦前を越える水準まで急速な回復を遂げた。日本の高度成長に伴い深刻化してきた公害問題、また浮遊選鉱法の発明による原料の粉状化に対応するため三菱グループを除く各社は自溶炉の技術を導入し近代化を積極的に進めた。現在自溶炉方式は世界の銅生産の40%、日本の銅生産の60%を占めている。三菱マテリアル社は世界に先駆けて連続製銅法を実用化し、現在世界で4基稼動しており今後の発展が期待されている。電解工場は溶錬の規模に合わせて電極の大型化、ハンドリングの自動化、環境改善等を積極的に実施して近代化を図った。

銅製錬の系統化は銅製錬において自溶炉方式の誕生から世界の主流技術となるまでについて、特に研究開発 を詳細に調査検討し系統図にまとめた。

■ Abstract

Copper is the first metal that human beings used in their hands. At any time of history, copper has played an important role as a functional material. Ever since the development of Electrical engineering applications, the consumptions of copper have been rapidly increasing all over the world, and it continues to grow.

In a review of the history of copper smelting and refining technology, which led to the rapid growth in copper consumption, the development of copper smelting and refining technologies in Japan was surveyed. During the World War II, Japanese smelters and refineries were critically damaged. After ten years, though, they recovered to their previous level of before the war. However, pollution became a serious problem with the rapid growth of Japanese economy. In the meantime, developments included a floatation method for the disintegration of ore and the introduction of the Flash Smelting Process, which was used by every company except for the Mitsubishi group. Thus, modernization advanced significantly.

The Flash Smelting Process is now used to produce forty percent of world's copper, and sixty percent of Japan's copper. Mitsubishi Materials was the first in the world to develop a continuous smelting process. This process is in use in four countries, and is expected to undergo further developments. Copper Refineries have been aggressively developing larger electrodes and automation systems to handle electrodes and have been making environmental improvements based on the expansion of smelter capacities.

Research on copper smelting in Japan was examined from the birth of the Flash Smelting Process to the mainstream technologies in use throughout the world. In particular, research and development of the flash smelting process was examined in detail, and this was depicted in a systemization diagram.

1. まえがき	3	7. 銅の電解精製	35
2. 古代人と銅	4	8. 銅製錬の系統化	41
3. 江戸時代の銅製錬	6	9. まとめ	44
4. 近世の銅製錬 (明治~太平洋戦争まで)	9	10. 銅製錬登録候補一覧	46
5. 戦後の銅製錬 (終戦から20年)	18	11. 謝辞	47
6. 高度成長から現在迄の銅製錬	28	12. 参考資料	48

▶ 電子式卓上計算機技術発展の系統化調査

A History of Electronic Desktop Calculator Technologies

瀬尾 悠紀雄 Yukio Seo

■ 要旨

わが国の電子式卓上計算機(電卓)の歴史は昭和39年(1964年)東京晴海のビジネスショウ会場で早川電機工業、キヤノンカメラ、ソニー、大井電気(いずれも当時の社名)の4社が製品を発表したことから始まる。これらの製品の中で使用されたトランジスタは2年後の昭和41年(1966年)にはICに、さらに2年後にはLSIへと集積度を高め、急激なスピードで電卓産業は当時のわが国のリーディングインダストリーに成長していった。昭和44年(1969年)頃には大手から小規模企業までが一気に電卓市場に参入し、激しい電卓戦争を繰り広げたが、この過程の中で電卓メーカは技術革新にしのぎを削り、様々な機能を備えて高機能化、多様化・複合化、小型・薄型化を実現して行き、昭和58年(1983年)には厚さわずか0.8ミリという究極的な薄型カード電卓を製品化した。わずか20年弱の短期間でこれほどまでに目を見張る技術革新をなしとげた民生品は過去に類例を見ないと万人が認めるところである。更に電卓産業はわが国産業界に計り知れない大きな成果をもたらした。その一つは世界トップレベルの半導体産業であり、もう一つはパソコン、PDAなどの各種情報機器・AV機器に不可欠な表示デバイスである液晶産業である。これら最先端IT産業の礎を築いたのが電卓産業であったことを我々は忘れてはならない。

「競争は技術革新のインキュベータ」であり、「どの製品よりも勝り価格が安い」という市場原理へのあくなき挑戦が大きな技術革新の成果をもたらしたのである。

本稿ではこの電卓産業の誕生前史から電卓技術の発展推移を系統的に調査し、またその背景ともなった市場の状況も合わせて調査した。

Abstract

The history of electronic desktop calculators of Japan dates back to 1964 when four companies, Hayakawa Electric Industry, Canon Camera, Sony and Oi Electric (corporate names of the four companies at that time), exhibited their products in a business machine show at the Harumi Fair Ground in Tokyo. The transistors used in these products were replaced two years later in 1966 by ICs and another two years later in 1968 by LSIs in enhancement of circuit integration. The electronic desktop calculator industry rapidly grew to a leading industry of Japan at that time.

Beginning around 1969, large and small manufacturers alike rushed to the electronic desktop calculator market and engaged in a cutthroat electronic desktop calculator competition. In this process, the electronic desktop calculator manufacturers vied in technological innovation and developed multifunctional compact and thin electronic desktop calculators with sophisticated and diverse functions. In 1983, what was called an "ultimately thin" card—type electronic desktop calculator only 0.8mm in thickness was a commercial reality. Many people agree that no other consumer electronic product accomplished such an amazing technological innovation in slightly less than 20 years. In addition, the electronic desktop calculator industry caused immeasurably deep impacts to the Japanese industry as a whole. One of them is the semiconductor industry of the top level of the world. Another example is the liquid crystal industry supplying display devices that are indispensable to personal computers, PDAs and other information equipment, as well as to audio and video equipment. We must not forget

that the electronic desktop calculator industry laid the foundation of the leading edge IT industry of today.

"Competition is an incubator of technological innovation" and "Better than any other product and low price." These untiring challenges to the market principle have achieved great results of the technological innovation.

This report studies in time series the evolution phases of the electronic desktop calculator technology from before the birth of the electronic desktop calculator industry. The condition of the market as the background of the evolution is also studied.

1. はじめに	51	6. まとめ	110
2. 電卓誕生以前 様々な計算用具・計算機	52	7. あとがき	111
3. 電子式卓上計算機の誕生	60	謝辞	111
4. 要素技術の推移と高機能化・多様化	68	付録	112
5. 電卓産業がもたらしたわが国の経済的・社会的効果	98		

▶ 露光装置技術発展の系統化調査

Investigation on Systemization of Technological Development of Photolithography Equipment

高橋 一雄 Kazuo Takahashi

■ 要旨

半導体デバイスの製造は、プレーナー型トランジスタの発明によって格段の進歩を遂げ、そこで開発された光露 光技術を中心とするいわゆる「フォトリソグラフィー技術」も半導体デバイスの発展と共に歩んできた。 特に、わ が国においては、カメラを中心とした光学機器を製造販売していたメーカーが、比較的早い時期から半導体露 光装置分野に参入しており、DRAM と MPU を中心とする集積回路の需要が増加する 1970 年代後半には、官 民共同の研究機関「超 LSI 共同研究組合」が組織され、プロセス技術や露光技術の研究・開発も加速された。 これを契機として、半導体デバイスメーカーの技術者と半導体製造装置メーカーの技術者の交流も深まり、それ に「官」、「学」も加わり共に議論を戦わしながら技術を磨き、装置開発に反映させていった。

この半導体デバイスの開発、製造装置の開発では、その目標となる具体的な数値が、ムアーの法則に代表されるロードマップと呼ばれる技術予測の年表によって明確に示されるようになり、比較的無駄のない開発が進められたこと。加えて、この時代は、軽量高剛性のエンジニアリング・セラミックス、エンジニアリング・プラスチックス、低膨張金属材料などの新しい材料技術、リニア・アクチュエータや PZT 素子に代表される高速・高精度駆動技術と精密制御技術、ヘテロダイン方式のレーザ干渉測長技術に代表される精密計測技術など、多くの新しい技術が開発されており、それらをタイムリーに取り入れられたことも幸いしている。

この調査報告書では、光露光装置、特に、1980年代中頃から1990年代後半まで、世界を凌駕したステッパー技術に着目し、その技術が半導体デバイスの微細化のトレンドと、その時々で、どのようにかかわって来たかについて調査したので、その結果について述べてみたい。

■ Abstract

Fabrication of semiconductor devices has achieved great progress through the invention of the planar—type transistor. Together with this progress in semiconductor devices, great progress in the developed light—exposure technology — of which so—called "photolithography" plays a leading role — has also been made. In particular, as regards the situation in Japan, the manufacturers that produce and distribute optical devices (mainly cameras) entered the field of semiconductor photolithography in the relatively early stage. And in the latter half of the 1970s — a time when the demand for integrated circuits like DRAMs (dynamic random access memories) and MPUs (microprocessor units) was increasing — a research body called the "VLSI Joint Research Association" was set up by the government and private sector (five computer manufacture companies) . As a result, research and development on process technologies and photo lithography technologies was accelerated. With this time marking a turning point, technical exchanges deepened between the process engineers of semiconductor—device manufacturers and the engineers at development section of semiconductor—fabrication equipment. In addition, the national laboratories and the academic institutes also joining in these lively exchanges, these technologies were refined, and these refinements were reflected in the subsequent development of devices and equipment.

As regards development of both fabrication equipment and semiconductor devices, tangible values were set as development targets by means of a chronological table of technological forecasts (known as a "roadmap") as

represented by Moore's Law. Efficient development could thus be pushed forward according to such roadmaps.

In addition, during that time, many new technologies were developed, for example, new materials technologies such as new lightweight & high-strength engineering ceramics, engineering plastics, a low-expansion materials, and new technologies such as precise servo equipments & control technologies, and precise measurement technologies such as heterodyne-laser interferometer. And it was fortunate that these technologies were introduced just at the right time.

Focusing on photolithography equipment — particularly world-beating stepper technology developed from the mid-1980s to the late 1990s — this report presents the results of an investigation on how this technology was related at any given time to the trend concerning the nano-fabrication of semiconductor devices.

1.	はじめに	119	附図 ムアーの法則と微細化のトレンド	160
2.	フォトリソグラフィー技術について	122	附表 1 半導体デバイスメーカー・トップ 10	161
3.	半導体の歴史と露光技術発展の経緯	130	附表 2 登録候補一覧	161
4.	露光装置(ステッパー)に投入された諸技術	139	附表3 半導体の歴史と露光装置の歴史	162
5.	露光装置の延命策	153	附表 4 ニコンとキヤノンの露光装置開発年表	164
6.	考察	155	参考資料1 半導体の製造プロセス	165
7.	おわりに	158	参考資料 2 半導体製造プロセスで使用される装置	169

4

原子カ用タービン発電機技術発展の系統化調査

Historical Development of Turbine Generators for Nuclear Power Plants

田里 誠 Makoto Tari

■ 要旨

日本の発電事業は明治 20 年頃に照明用直流電源の石炭炊き小規模・分散型火力発電に始まり、やがて水力による交流電力を高電圧・長距離送電する「水主火従」時代へと移行した。 大正時代後期から第二次世界大戦までの需要急増には「水火併用」で対応し、戦後復興による需要増に応え新鋭火力プラントが相次いで建設され、1961 (昭和 36) 年には発電の主役は再度火力となり急成長していった。

しかし、その後発生した公害問題、2度の石油危機から総発電力量の約75%を担う火力プラントの運用・建設が困難となり、「省エネ」と「脱石油」へと大きく転換した。この状況下で原子力発電の積極的開発の必要性が増大してきた。一次エネルギーの石油依存度を50%以下とする基本方針が打ち出され、これを受けて電源のベストミックスを目指し、「原主油従時代」へ向けた路線変更となった。

日本の原子力発電は、既に1954(昭和29)年頃から次世代電気エネルギー源としての検討が開始され、1955(昭和30)年に『原子力三法』が成立し、商業規模の発電プラント建設の受け皿として1957(昭和32)年に日本原子力発電株式会社が創立され、当時運転実績の多いコールダーホール改良型(GCR)を導入した東海発電所が1967(昭和42)年7月16日166MW全出力運転に入り、日本の原子力開発の一頁を飾った。

国のエネルギー政策に沿った原子力電源開発により、総発電力量に占める比率はその経過年数に比例するかの様に順調に伸長し最大36.8%(平成10年)に達している。現在、運転中54基(2005年末)で総設備容量4,822.2万kWを有し、米、仏に続き世界的にも3番目の設備容量であり、建設中2基、着工準備中12基がある。プラント容量も輸入機器による166MWから始まり、現在は国産・自主技術による最大1,380MWプラントが実現し、今や日本の原子力発電プラントは、プラント容量、運転性、信頼性、運転稼働率、安全性において世界的にもトップレベルにあり、国、電力、メーカの一体感ある取組みの成果である。

原子力発電プラントの中で、発電機は最後のエネルギー変換装置として重要な機器であり、プラント全体との協調を図りつつ要求ニーズに応えながら発展してきた。基本的には、タービン・発電機などの2次系は火力発電プラント技術で対処でき、しかも回転速度が火力機の半分であり回転部の設計上の制限は比較的少なく、タービン・発電機がプラント容量を制限することはない。しかし、長距離・大電力送電、一定出力運転など原子力プラントの特殊性に起因する電力系統運用上の課題があるが、それらへの対応技術が確立され電力系統の中で確固たる地位を確保している。

日本における原子力発電プラントの著しい進展は、エネルギー政策、1次系技術、タービン技術、およびプラント運用、それに社会情勢などの影響を色濃く受けて発展してきていることから、まず原子力発電プラントについて調査し、その関連で、タービン発電機技術進展の経緯と革新的な技術・製品について調査し系統化する。

さらに、原子力発電は利点も多いが解決しなければならない問題・課題もある。そのひとつがプラント運転稼働率の向上と高信頼性の実現である。原子力発電システムの発展過程で発生した事故を風化させることなく、真因を徹底的に究明し、慎重に対処し解決する中で「負の遺産」を「正の資産」に変え、原子力発電プラント信頼性の向上を図ってきた。しかし、現実に起きた重大事故は、巨大エネルギーの扱いを一歩間違えると制御不可能となり地球規模で環境汚染する事実を教えてくれており、今後とも最優先で取組まなければ課題である。原子力関係者による多くの取組みがあり、これらの取組みも取り上げた。

■ Abstract

Electricity generation in Japan began in the late 1870s with small-sized and dispersed coal firing thermal power generation was introduced as a DC power for lighting. Later, Japan entered an era in which hydroelectric power superseded thermal power as the main power source, and high voltage and long distance transmitted AC power was produced at hydraulic power stations.

Thermal and hydraulic power generations were combined to respond to the rapidly increasing electricity demand from the early 1920s through to the 2nd World War, and advanced thermal power plants were built one after another to respond to the massive demand due to reconstruction after the war. By 1961, thermal electric power had become again the main power source and growth continued at a rapid pace.

The environmental problems that arose later, however, in addition to two oil crises, created difficulties in the construction and operation of thermal power plants, which supplied about 75% of the total electricity, and Japan developed a new focus on energy saving and shift away from oil. These circumstances increased need for the aggressive development of nuclear power generation. The Japanese government laid out a new basic policy calling for the oil dependency as a primary energy source to be below 50%, and aiming for the best mix of electric power sources, the government changed its course to enter an era in which nuclear power was the primary and oil the secondary source of electric power.

Feasibility studies targeting nuclear power as a source of next-generation electric power had already begun in 1954, and the "Three laws of nuclear power" (the Atomic Energy Basic Law, the Atomic Energy Commission Establishment Law, and an amendment to the Law on the Establishment of the Prime Minister's Cabinet) were put into effect in 1955. The Japan Atomic Power Co. was established in 1957 to be engaged in the construction of a commercial-use nuclear power plant, and a Gas Cooled Reactor, which was much experienced at the time, was installed at the Tokai Power Station, going into 166MW of full load operation on July 16, 1967. This marked the beginning of nuclear power development in Japan.

As a result of the development of nuclear power generation in keeping with the energy policies of the Japanese government, the ratio of nuclear power to total power generation increased steadily with each passing year, reaching a peak of 36.8% in 1998. The 54 nuclear power plants currently in operation (as of the end of 2005) had a total capacity of 48,222MW, the largest capacity in the world after America and France. There are two plants under construction and 12 under planning. Plant capacity began at 166MW with imported equipments, and the largest plant manufactured using self established technologies is 1,380MW. Japanese nuclear power plant are now classified as the world's top ranking in terms of plant capacity, operationability, reliability, plant efficiency, and safety, and there is a sense of unity in the framework of government, electric power companies, and manufacturers.

Generators play an important role in nuclear power plants as the final energy conversion, and have been developed while responding to requirements and at the same time maintaining compatibility with the whole plant equipments. Basically, 2nd system (e.g., turbine/generator) can be manufactured by thermal power plant technologies. The rotating speed is half that of thermal plant generator and the design limitations of rotating parts are relatively less, so turbine/generator units do not limit the plant capacity. There are several issues related to power system operations due to specific characteristics of nuclear power plants, such as constant load operations and long-distance / high power transmissions, but technologies have been established to solve these issues, and nuclear power has secured a position in the power system.

The remarkable development of nuclear power plants in Japan has been strongly affected by numerous factors, including government energy policies, reactor technologies, turbine technologies, and plant operations, as well as social trends. We will first survey nuclear power plants, and then investigate the historical development of turbine generator technology, innovative technologies and products.

Nuclear power has many advantages, but there are many problems and issues that must be resolved. One of these is achieving of plant availability with high reliability together. Much effort has been made to learn from the troubles that have occurred through the progress of nuclear power generation systems, by clearly identifying the root causes and thoughtful conduction of countermeasures, thereby changing "negative legacy" into "positive assets," and improving reliability of nuclear power plants. The major accidents that have actually occurred, however, have taught us the fact that one misstep in handling this vast energy source lead to an out of controlled situation resulting in environmental pollution on a global scale. This issue is one that must be given the utmost priority hereafter. Many other issues that participants of nuclear power have challenged will be also examined.

1. はじめに	173	6. 考察	220
2. 電気事業の推移と原子力発電の進展	174	7. 今後の課題と対応	224
3. 日本における動力炉の発展の経緯	177	8. まとめ	228
4. 原子力用タービン	200	謝辞	229
5. 原子力用タービン発電機	204	付録	232

移動通信端末・携帯電話技術発展の系統化調査

Systematic Survey of Technological Developments in Mobile Communication Terminals/Portable Telephones

森島 光紀 Mitsunori Morishima

■ 要旨

本報告書は今日の「ケータイ」の基礎を作り出した約 100 年の歴史、技術の発展過程、サービス事業者の変遷、技術発達と社会・文化・経済・行政・海外の関わり、国際標準化活動、技術の系統化、日本のオリジナル技術の強みと弱み、課題と考察等の調査成果である。

日本の初期の無線通信は、自主技術開発中心で発展してきた。「志田林三郎」はマルコーニの無線通信に 10 年先駆けて 1885 年、隅田川での導電式無線実験に成功、電気学会を設立し、「無線通信の実用化, 更に 光通信・録音・録画等のシステムの実現」を予想した。 1896 年、無線通信の研究が、逓信省の研究機関で 開始された。 1897 年、「松代松之助」は、文献だけを頼りに東京湾 1 海里の無線電信実験に成功した。 1925 年、八木秀次・宇田新太郎の「八木・宇田アンテナ」の発見は世界的な発明であった。

国産の「36式無線電信機」が、日露戦争で大活躍した。1912年、携帯電話の祖先の「TYK 式無線電話」が、発明された。1940年代、中波・短波帯の無線電話が、国産技術で実用化された。移動通信が一般に普及したのは、第二次世界大戦後で、超短波帯での「警察無線」、「船舶電話」、「列車電話」、1967年、「自動交換接続による都市災害対策用可搬型無線電話システム」が開発された。1968年、「ポケットベル」の開始、1970年、大阪万国博覧会で電電公社から「日本初の携帯電話」が、出展された。これらの技術が、携帯電話やコードレス電話へ応用されている。1979年、世界初の800MHz帯を利用する「自動車電話」(体積7,000cc、重量約7kg)が、サービスされた。

1985 年に施行された通信自由化により、NTT 以外の新規参入会社による自動車電話サービスが、開始された。 1987 年、日本初の「携帯電話」(体積 500cc、重量 750g) サービスが開始された。1991 年、第一世代の「世界最小最軽量のアナログ携帯電話」の導入、1993 年、第二世代の「デジタル携帯電話」の導入、1994 年、端末の自由化で自由競争時代に入った。1999 年、携帯電話のインターネット接続サービスが導入され、2000 年、「カメラ付携帯電話」が登場した。2001 年、第三世代の「次世代携帯電話」が世界で初めて導入された。

これまでの移動通信の技術開発テーマは、伝送品質向上、大容量化、広域化、個人装備化、サービスの多様化などである。具体的には、周波数有効利用技術、無線機器技術、小型・軽量・経済化技術、実装技術の開発が推進されてきた。伝送方式の変遷は、モールス信号、アナログ方式、デジタル方式そしてインターネット、マルチメディア化へ、伝送メディアは音、データ、画像、映像へと進展している。

移動通信発展の特徴は、社会や経済活動の複雑化、効率化、高度情報化にともなって多様な移動通信が発展してきた。携帯電話とインターネットの融合が、世界に誇る「携帯文化」を生み出した。携帯文化は、時代ともに、第一世代で「ビジネスの利便性の確立」、第二世代で「人間本質の友文化の確立」、第三世代で「多様化とパーソナル文化の確立」へと進展している。

誰でも使用できる制約のない、人間性重視の、使いやすく、安全で、安心な「わがままなユビキタス通信端末」 の開発推進が重要である。

■ Abstract

This report is the result of an investigation of the development process of approximately 100-year history of communication technology, which provides a basis for today's "KEITAI (portable telephone)", the changes undergone by service providers, the interaction of technological developments with society, culture, economy, radio wave administration and other countries, international standardization activities, technological systematization, strength and weakness of Japan's unique technologies and the pertinent issues and

considerations among others.

Initially, Japan's wireless communication evolved around independent technological developments: Dr. Rinsaburo Shida successfully conducted an experiment on electromagnetic guidance at the Sumida River in 1885, ten years before Marconi's communication test, and established the Institute of Electrical Engineers of Japan and predicted the practical use of wireless communication and the realization of systems for optical communication, audio recording, picture recording and others. In 1896, research on wireless communication began in the research laboratories of the Communication Department of Japan. In 1897, Dr. Matsunosuke Matsushiro succeeded in a radiotelegraphy experiment over one nautical mile in Tokyo Bay with the help of technical literature only. In 1925, Dr. Hidetsugu Yagi and Dr. Shintaro Uda invented the "Yagi-Uda antenna", a world-class invention.

The domestically-produced Type 36 radiotelegraph played an important role in the Russo-Japanese War. In 1912, the "TYK wireless telephone", a predecessor of the portable telephone, was invented. Subsequently, domestically-developed and -produced medium-wave and short-wave wireless telephones were put into practical use in the 1940s. Yet it was after World War II that mobile communications became accessible to the public. VHF-wave police radio, maritime telephones and train telephones were introduced. A portable telephone system using an automatic exchange connection was developed in 1967 for urban disasters. The "pager" service was introduced in 1968. In 1970, Japan's first portable telephone was exhibited at Expo '70 by Nippon Telegraph and Telephone Public Corporation (NTT). These technologies were applied to portable and cordless telephones. In 1985, a car telephone (about 7 kg in weight and 7,000 cc in volume) using the 800-MHz band was introduced for the first time in the world. It was only after the deregulation of the telecommunications sectors enforced in 1985 that car telephone services by companies other than NTT began. In 1987, Japan's first service for "portable telephone" (500 cc in volume and 750 g in weight) began. In 1991, an analog telephone, the world's smallest and lightest first-generation portable phone, was introduced. In 1993, "a digital portable telephone" of the second generation was introduced. With the deregulation of telephone terminals in 1994, an age of free competition started. In 1999, Internet connection services for portable telephones were introduced. In 2000, "portable telephones with a built-in camera" were introduced in the market. In 2001, a third-generation advanced portable telephone was introduced for the first time in the world.

The technological development themes in mobile communication have been for transmission quality improvement, larger capacity, wider coverage, personalized equipment development, diversification of services, etc. In particular, technologies for effective use of frequency resource; wireless equipment, size/weight/cost reduction and packaging/mounting have been promoted. Over the years, the signal transmission system evolved from Morse code to analog, to digital, and finally to Internet multimedia. The transmission media have advanced from sound only to data, to pictures and to video. Various mobile communication features have been developed along with complexity, efficiency improvement and high-networked information in socioeconomic activities. A marriage of the portable telephone and the Internet led to the birth of the "KEITAI culture" now highly revered around the world. The "KEITAI culture" progressed from the "establishment of the convenience in business activities" in the first generation, to the "establishment of the companionship culture inherent to the nature of humankind" in the second generation and to the "establishment of a diversified and individualized culture" in the third generation.

What really matters is the technology development for a "self-willed ubiquitous communication terminal" which is usable by anyone without any restrictions, oriented for human nature, easy to use, safe and untroubled.

1. はじめに	239	6. 第三世代のパーソナル化の拡張期	277
2. 公衆移動通信の発展経緯概要	240	7. 携帯電話の技術発展の系統化分析	283
3. 無線の黎明期	249	8. 今後の課題と考察	296
4. 第一世代のアナログ化の揺籃期から実用期	256	9. あとがき	299
5. 第二世代のデジタル化の成長期	271		